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ABSTRACT

eWhen a person listens to speech corrupted by noise or other adverse

environmental factors, speech intelligibility may be impaired slightly or

not at all. The same corrupted speech, after being vocoded, often causes

drastic intelligibility loss. This is due to the fact that the human

peripheral auditory system is a superior signal processor to that of the

vocoder. This report is based on the premise that a vocoder analyzer that

better resembles the peripheral auditory system would function in a

superior manner to present-day vocoders. Topics include reviews of speech

enhancement techniques, perceptual analysis of diagnostic rhyme test data,

a brief description of the peripheral auditory system and an outline of

proposed psychophysical tests. The final section is devoted to a

discussion of some preliminary work on computer simulation of an auditory

model.

Accession For

NTIS GRA&I

DTIC TAB

Unannounced F]
Justification

y By
Distribution/

Availability Codes
---Avai l an/o

Dist |Special



II
I CONTENTS

Abstract ii

I. INTRODUCTION 1

II. SPEECH ENHANCEMENT TECHNIQUES 2

III. PERCEPTUAL ANALYSIS OF VOCODERS BASED ON DIAGNOSTIC

RHYME TEST DATA 4

IV. PERCEPTUAL ANALYSIS OF VOCODERS BASED ON PITCH EXPERIMENTS 24

V. THE PERIPHERAL AUDITORY SYSTEM 35

VI. MODELLING THE AUDITORY SYSTEM 56

REFERENCES 66

APPENDIX A 69

APPENDIX B 77

APPENDIX C 83

tv

IMP

i'V



ILLUSTRAT IONS

1. Intelligibility vs. cut-off frequency for "k" (from
Miller-Nicely data). 10

2. Intelligibility vs. cut-off frequency (from Miller-Nicely
data), all 16 consonants. Ii

3. Total number of correct responses vs. s/n for speech band-
width 200-6500 Hz (from Miller-Nicely). 12

4. Aggravation factor for four systems. 21

5. DRT scores vs. systems in P-15 noise. 22

6. Cartoon-like representation of the peripheral auditory
system. 25

7. Block diagram of energy transfers in the ear. 26

8. Some views of the auditory system. (a) Sectional and
perspective views of the human hearing mechanism.
(b) Sectional view of the cochlea. (c) Schematic view of the
human hearing mechanism showing the outer ear, the middle

ear, the cochlea, and the nerve fibers leading to the brain. 27

9. Block diagram of peripheral auditory system. From Weiner
(1949). 38

10. The major structural features of the uncoiled cochlea.
Note that the basilar membrane is narrow near the round
window and wider near the helicotrema, a taper opposite the
cross-section area of the cochlea. 40

I. Structural and anatomical features of the cochlea.
(a) The cochlea in relation to the middle ear and auditory
nerve. (b) Cross section of the cochlea. (c) The scale media
(from Green "An Introduction to Hearing"). 41

12. Computer model of basilar-membrane displacement. Response
to a single rarefaction impulse of sound pressure at the
eardrum. 42

13. Analytical model for basilar-membrane displacement. (After
Flanagan, 1962). 44

vii

__ _ _ _ _ _



ILLUSTRATIONS (continued)

14. Camera lucida drawing of a cross section of the cochlea
partition in the second turn of a guinea pig cochlea. The

attachment shown here of the tectorial membrane to the
inner supporting cell, and to Hensen's cells, is based on
microdissection of fresh, unfixed specimens. From Davis
(1961). 46

15. Relationship between the tectorial membrane and cilia of

outer hair cells. At rest (lower illustration) the cilia
stand perpendicular to the cuticular surface of the cell.
When pressure waves move the basilar membrane, a "shearing"
force acts to alter the angle of the cilia with respect to
the cuticular surface. Note that the cilia of the inner
hair cells are shown to bend, not from tectorial membrane
attachment but from fluid motion. From P. Dallos and

* A. Ryan,: Physiology of the inner ear. In J. L. Northern
(ed).: Hearing Disorders, 1976, p. 95, (Little Brown and
Co.). 47

16. Interval histograms for tone bursts at different
frequencies. 50

17. Diagram of the auditory pathways linking the brain with
the ear. 52

18. Diagrammatic representation of membrane potential, threshold

potential, and spike activity of the model neuron. From
Weiss. 59

RM-maximum threshold potential

RR-resting threshold potential

TR-time constant of the exponential decay

of the threshold from its maximum to its
resting value

19. (a) Block diagram of the cascade/parallel filterbank.
(b) Pole-zero plots and transfer functions of filters

used in the filterbanks.
(c) Block diagram of one channel of the detection and

compression models. 61

20. Neuron-like elements in pitch measurement model.
(a) Nomenclature for simple "neuron" N.
(b) Operation of neuron N.
(c) Level B of neural net. 63

viii

$1__ ____



21. Outputs of several filters and neurons for male
utterance of length 150 msec. (See text for full
explanation.) 65

A-1. Number of correct plosive identifications vs. low pass
and high pass cut-off frequencies (from Miller-Nicely). 71

A-2. Number of correct fricative identifications vs. low pass
and high pass cut-off frequencies (from Miller-Nicely). /1

A-3. Number of correct nasal identifications vs. low pass and
high pass cut-off frequencies (from Miller-Nicely). 73

4 Ix



1. INTRODUCTION

When speech is degraded before entering the listener's ear, the

resultant signal is generally less intelligible. However, loss of

intelligibility is made worse when the degraded speech is first processed

by any of a great many speech communications systems. This fact is of

great practical concern, for example, in a military aircraft environment,

where intelligible communications can become a life and death matter.

Also, under certain adverse conditions (such as a jamming environment), low

bit-rate speech is mandatory. Thus, the fact that present-day operational

vocoder systems greatly reduce intelligibility of speech further aggravates

an already difficult situation. This report summarizes recent work at

Lincoln Laboratory dedicated to better understanding this problem with the

hope of alleviating it. Our approach is strongly oriented towards

exploiting the properties of human auditory perception and physiology.

Such an approach can prove to be beneficial for the following reason:

The prevalent model of the peripheral human auditory system resembles

a bank of many highly overlapped bandpass filters. The particular shape of

these filters, the associated non-linearities and the relation of these

anatomical and physiological models to psychophysical experiments have been

the subject of intensive study. Existing VLSI technology makes the

engineering implementation of crude auditory models quite feasible. Since

there is evidence that processing by the human auditory system is less

inimical to intelligibility than is a vocoder, these models may strongly

suggest methods of designing more robust future vocoders.



The report will be divided as follows: in Section II we review the

existing knowledge on speech enhancement techniques. To a great extent,

these methods deal with degradations caused by additive acoustic noise and

focus on noise reduction techniques. Unfortunately, all such attempts also

remove important information-bearing elements from the speech wave and

generally result in no improvement of intelligibility. Next, in Section

III we present evidence that vocoding generally aggravates intelligibility

loss, and speculate as to some of the probable causes. In that section,

our main evidence will be the body of knowledge contained in recently

obtained DRT (Diagnostic Rhyme Test) results. In Section IV we review a

few of the major results of the psychophysics of human pitch perception and

present some of our recent work directed towards extending these results to

pitch perception of speech. In Section V we review and synopsize some of

the important knowledge gained about the functioning of the human

peripheral auditory system. Finally, in Section VI we present preliminary

results on a computer simulation program of a model of the peripheral

auditory system.

II. SPEECH ENHANCEMENT TECHNIQUES

The book Speech Enhancement edited by Jae S. Lim [I] contains much

useful information on reported efforts to reduce acoustic noise or mitigate

its effects. In his overview to part one of the book, Lim summarizes

progress to date:

In summary, successful results are available
only in rather restricted applications. With
narrowband background noise, for example, simple
linear filtering can significantly improve speech
intelligibility. For wideband random background
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noise, speech quality can be improved by various
algorithms discussed in this section. In the
context of bandwidth compression of noisy speech,
speech quality can be improved in the presence of
wideband random noise, and some studies suggest
that small improvemnts in intelligibility may
also be possible. Major unsolved problems
remain, however. For example, no algorithm has
been shown to improve speech inte!ligiblity when
speech is degraded by wideband random noise and
there is only one microphone input. In the case
of interference from competing speakers, improve-
ment has not been demonstrated in either Intel]'
gibility or quality. Even with multiple
microphone inputs, significant intelligiblity
improvement has been demonstrated only in

restricted environments.

The message contained in this paragraph is that noit, inot easily be

stripped away from speech without seriously compromising the speech

intelligiblity. Much of the work in part one of Lim's book is related to

classical work on detection of simple signals (such as sine waves) in noise

or relate, at least philosophically, to Wiener's theoretical ideas. But

speech is neither a simple signal nor a statistically stationary signal.

At this point we should inquire as to how capable are people of

extracting speech in noise. Quantitative information on this subject is

sparse. Nevertheless, most of us will agree with the "conventional wisdom"

that people do well in this task. Cherry 12] has summarized some ideas on

this subject via discussion of the "cocktail party effect" as follows:

(1) At a loud cocktail party, the listener can watch the speaker's

mouth and gain some speech cues by purely visual means.

(2) Binaural hearing permits the listener to direct his attention at

the sounds emanating from the speaker's mouth.

3



(3) Syntax and semantics of the conversation are obviously of great

help.

(4) Tracking of the speaker's pitch and timbre permit some "blocking

out" of the noise.

Part I of Lim's compilation deals with enhancement of speech degraded

by additive noise. The methods used can be categorized as:

(a) methods for trying to improve the signal to noise ratio;

(b) methods for trying to take advantage of the periodicity of

speech;

(c) methods for trying to take advantage of our knowledge of the

speech production model;

(d) methods using more than one microphone input.

Thus far, none of the above methods have demonstrated any improvement

in inteltigiblity.

Part II of Speech Enhancement deals with processing mettads that are

applied to the speech prior to its degradation by additive noise. Thus,

these papers have no relevance to the problem of an acoustic noise

environment.

]If. PERCEPTUAL ANALY'US OF VOCODERS BASED ON DIAGNOSTIC RHYME TEST DATA

Since 1975, ma~iy speech processing systems have been subjected to

Diagnostic Rhyme Tests (DRTs) and much interesting information is available

from these tests. For example, the DRT averaged over three speakets for

speech with no acoustic noise background is 98.4 and this score drops to

92.6 when appreciable simulated aircraft noise is acoustically added. This

is a loss of 5.8 points, not insignificant. On the other hand, the DRT for
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Lincoln Laboratory LPC-1O is 88.1% and drops to 75.2% with the same noise

added, a loss of 12.9 points. Thus, the LPC-1O processing algorithm

"aggravates" the DRT loss by 12.9 - 5.8 - 7.1 points.

What causes a vocoder to aggravate intelligiblity loss for noisy input

speech? One may speculate as follows:

(1) Much of the information in the speech wave comes from the

consonants, which are typically low level sounds so they can be more easily

masked by the noise.

(2) A typical spectral cross section of a vowel, glide or nasal has

peaks and valleys. The valleys may be masked even though the peaks have

good speech to noise ratio.

(3) During a vowel sound, the speech energy Is concentrated in narrow

bands about the harmonics of the fundamental, while noise is usually spread

over the entire spectrum. During voiced sounds, a vocoder tends to

transform this noise into modulation on the speech harmonics.

DRT scores are a convenient way of comparing systems for two reasons.

First, they are of widespread use in rating government speech systems.

Second, the data obtained can be used as a diagnostic tool.

The Diagnostic Rhyme Test (DRT) has, for the past few years, been

perhaps the most prevalent method of evaluating vocoder systems for DoD use

[3,41. In this section, we make further use of the DRT to study several

* .important questions related to vocoder performance:

(a) The relative contributions of the vocoder pitch and spectral

tracks to intelligibility loss.

5
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(b) The "aggravation factor" of various systems, defined as the

additional loss in DRT points caused by a vocoder in an acoustic noise

background.

(c) The improvement in intelligibility due to various hybrid

configurations wherein a portion of the unvocoded speech is added to the

vocoded speech.

Confusion Matrices

DRT results are useful not only for obtaining relative scores for

different cases but also because of the details of diagnosis. We have

chosen to present these details via a confusion matrix; this matrix yields

valuable information on the type of errors caused by a given system.

The confusion matrix was proposed by Miller and Nicely [5]. Their

matrix consisted of a 16 x 16 array of consonants, as shown for example, in

Table I (their Table II), reproduced below. By scanning any row (for

example, the f row), one can see how many times f was mislabelled by the

listeners and how it was mislabelled. For example, "f" was incorrectly

identified as "p" 31 times, while it was correctly identified 85 times.

The Miller-Nicely data is based on utterances of each consonant

followed by the vowel "ah" (as in father). DRT confusion matrices are

based on the initial consonant-vowel combination of each DRT word. Thus,

for example, if the word "daunt" is mislabelled as "taunt," this would

correspond to a d-t confusion.

The Miller-Nicely processing of the utterances consisted of filtering

and additive noise. Thus, in Table I, the signal to noise ratio was set

for -12 db and the filter used covered the range 200-6500 Hz.

.i*
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Table II lists the 17 different conditions used by Miller and Nicely.

Examination of the resulting 17 confusion matrices permits us to evaluate

how the 16 consonants are affected by various filtering conditions and for

various noise conditions. It is instructive, for example to examine the

intelligibility of each consonant in response to low pass and high pass

filtering. In Appendix A, these effects are plotted separately for each

consonant. For purposes of illustration, the graph for the consonant *k"

is reproduced here as Fig. 1. The solid curve is derived from items 7

through 12 in Table II; the dashed curve is derived from items 13 through

17 of Table II. The ordinate represents the correct number of

identifications while the abscissa represents the low cutoff frequency (for

the solid curve) or the high cutoff frequency (for the dashed curve). Any

horizontal cut shows a comparison of high pass versus low pass cutoff for

equal intelligibility. Thus, in Fig. I a low pass filter from 200-1200 Hz

gives the same intelligibility as does a high pass filter from

1700-5000 Hz.

Figure 2 is a composite graph of all 16 consonants. It is seen that

the curves intersect at about 1500 Hz; this tells us that, for the

L'iller-Nicely data, equal intelligibility is obtained for speech filtered

to 200-1500 Hz and speech filtered to 1500-5000 Hz.

Another interesting general result obtained from the Miller-Nicely

data is seen in Fig. 3. Here the bandwidth is kept fixed (200-6500 Hz) and

the signal to noise ratio is varied. The curve is quite linear (on a db

abscissa) until zero db at which point it begins to saturate. The 12 db

point corresponds to 3634 correct labels compared to 366 mistakes and this

yields 90.8% correct.



TABLE II

17 CONDITIONS FOR MILLER-NICELY CONFUSION MATRIX DATA

SIN Filter Band

1 -18 200-6500

2 -12

3 -6

4 0

5 6

6 12

7 12 200-300

8 12 200-400

9 12 200-600

10 12 200-1200

11 12 200-2500

12 12 200-5000

13 12 1000-5000

14 12 2000-5000

15 12 2500-5000

16 12 3000-5000

17 12 4500-5000

9
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INTELLIGIBILITY vs. CUT-OFF FREQUENCY FOR "k"

300

200

0

im HIGH-PASS CUT-OFF

Z LOW-PASS CUT-OFF

100

0 123

FREQUENCY (kHz)

Fig. 1. Intelligibility vs. cut-off frequency for "It" (from
Miller-Nicely data).
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Fig. 2. Intelligibility vs. cut-off frequency (from Miller-Nicely
data), all 16 consonants.
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Fig. 3. Total number of correct responses vs. s/n for speech band-
width 200-6500 Hz (from Miller-Nicely).
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Analysis of DRT-Generated Confusion Matrices

For purposes of this section, DRT data was obtained from a variety of

vocoder configurations. The recording of the input data and the listener

results were done via subcontract to Dynastat. (Appendix B shows examples

of confusion matrices.) First, the various configurations listed in Table

III will be explained. Then, the DRT scores listed in Table III will be

used as a basis for discussing the questions posed at the beginning of this

section.

Most of the configurations of Table III are variations of a basic

spectrally flattened channel vocoder structure which we have called

"flatvoc." This basic structure has the following parameters:

10 kHz sampling rate

23 channels (filter bandwidths and spacing in Table IV)

Gold pitch detector 161

double filter bank synthesizer

100 Hz frame rate

3 bit log deltamod coding relative to 6 bit log for low filter

8 kbps total bit rate

Three environmental conditions are tabulated. For completeness, some

of the results are listed directly from Singer [3); these are starred.

Pitch vs Spectral Vulnerability

With respect to DRT scores, items 20, 21 and 22 make abundantly clear

the reletive vulnerability of the pitch and spectral tracks. Item 20 shows

that computer-generated noise (corresponding to between 0 and 6 db speech-

to-noise ratio) results in a DRT score of 74.2, compared to the noiseless

13



TABLE III

DIAGNOSTIC RHYME TEST SCORES

Condition: QUIET, DYNAMIC
MICROPHONE JH PC RM Average

1. unprocessed * 98.0 98.6 98.6 98.4

2. 5 KHz RAW:PCM speech
with 10 KHz sampling and
12 bit quantization 97.0 97.4 96.1 96.8

3. flatvoc: 8 kbps
channel vocoder 94.5 95.6 93.7 94.6

4. MonoI5O: flatvoc with
150 kiz monotone pitch 92.6 92.2 91.5 92.1

5. M2400: flatvoc with

reduced frame rate
plus frame fill 87.9 91.5 88.8 89.4

6. Belgard: 2400 bps
U.K. channel vocoder 86.5

7. Belgard hiss; belgard
with noise excitation 86.4

Condition: f15 JH PC RM Average

7a. unprocessed: 92.6

7b. unprocessed 5 KHz 90.1

8. flatvoc: 8 kbps *

channel vocoder 80.1 87.4 83.3 83.6

9. flatvoc: frame fill * 78.0 85.3 79.4 80.9

10. flatvoc: 4 kbps * 72.9 85.5 75.1 77.9

14
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F1

TABLE III

(continued)

Condition: f15 (continued) JR PC RM Average

11. base 6: flatvoc with
waveform coded sums of
outputs of filters 1-6 80.6 86.6 85.4 84.2

12. m2400: flatvoc with

reduced frame rate plus
frame fill 71.2 83.7 75.1 76.7

13. flathyb12a: flatvoc
with uncoded 70-1330 Hz
speech inserted 85.8 89.6 86.2 67.2 (0.87)

14. flathybl2b; 1470-4330 Hz 81.9 84.9 85.9 84.2 (0.86)

15. flathyb5a; 70-770 Hz 81.8 85.9 84.0 83.9 (1.11)

16. flathybl5b; 1970-4330 Hz 81.9 85.8 88.2 85.3 (0.66)

17. Belgard: 2400 bps U.K.
channel vocoder 68.4 75.5 70.3 71.4

18. Belgard hiss: Belgard
with noise excitation 65.6 69.1 64.3 66.33

Condition: ADDED COKPUTER
NOISE JH PC RM Average

19. flatvoc: computer
noise - 240 86.6 85.3 81.4 84.4

20. flatvoc: computer
noise - 500 74.2

21. clearpitch: flatvoc

with computer noise of
500 applied only to
spectrum track 74.6 81.1 75.9 77.2

22. clearspec: same as

above but noise applied
only to pitch track 92.4 93.1 93.5 93.0

15



TABLE III
(continued)

Condition: ADDED COMPUTER
NOISE (continued) JH PC IRM Average

23. wide: cascade of

monol5O and flatvoc,
with computer noise of

500 added to monoi50
output 74.3 78.4 68.6 73.8

24. narrow: same as above
except that all analyzer
bandpass filter widths
are reduced to 40 Hz 55.6 72.9 61.7 63.4

16



TABLE IV

FILTER BANK FOR 10 KHZ SAMPLING
23 CHANNELS

3 db Band Edges Center Frequency Bandwidth

1. 70-210 14C 140
2. 210-350 280 140
3. 350-490 420 140
4. 490-630 560 140
5. 630-770 700 140
6. 770-910 840 140
7. 910-1050 980 140
8. 1050-1190 1120 140
9. 1190-1330 1260 140
10. 1330-1470 1400 140
11. 1470-1610 1540 140
12. 1610-1790 1700 180
13. 1790-1970 1880 180
14. 1970-2150 2060 180
15. 2150-2330 2240 180
16. 2330-2510 2420 180
17. 2510-2770 2640 260
18. 2770-3030 2900 260
19. 3030-3290 3160 260
20. 3290-3550 3420 260
21. 3550-3810 3680 260
22. 3810-4070 3940 260
23. 4070-4330 4200 260

17



case of 94.6 (item 3). Removal of the noise from only the pitch track

(item 21) yields a gain of 3 DRT points, removal of the noise from only

the spectral track (item 22) yields a much larger gain of 19.8 DRT points,

resulting in a score of 93, which is quite close to the noiseless case.

These results seem to argue for an almost total concentration on

spectral (as opposed to pitch) questions, but let us look a bit more.

Item 4 actually augments such a viewpoint; it tells us that using a

monotone pitch track, the score drops by only 2.5 points (compare to item

3). However, items 6, 7, 17, and 18 tell a somewhat different story.

Items 6 and 7 show that, in the absence of background noise, pure noise

excitation at the vocoder synthesizer is comparable to a proper pitch

track. Items 17 and 18 show that such is no longer the case in the

presence of an F-15 acoustic noise background.

More test results are needed before any definitive statements can be

made but some preliminary comments are in order. First, it is time to lay

to rest the many "folk wisdom" statements that equate lack of widespread

vocoder usage with poor pitch detection. The situation is clearly more

complicated and if anything, spectral fidelity seems to be the major

culprit, although items 17 and 18 indicate that more natural buzz-hiss

detection has a beneficial effect in the presence of noise. Second, it

appears that DRT scores are not sufficiently sensitive to pitch flaws in

the vocoder system. Pitch is a prosodic feature and its real connection to

perception should lie in the connected speech rather than isolated word

domain.

18



Aggravat ion Factor

From items I through 6 of Table III we can detect a gradual loss of

intelligibility. It seems fair to say that vocoder intelligibility loss is

based on the accumujatLon of small contributions due to several factors.

For example, the 1.6 point loss in going from item I to item 2 is probably

due to the slight bandwidth reduction; the 2.2 point loss from item 2 to

item 3 could be due to the spectral sampling and quantization, and

(perhaps) the extra reverberation created by the three filter banks of the

vocoder. A further loss of 2.5 points (items 3 to 4) is the effect of an

unnatural pitch track. A rather substantial loss of 5.2 points (items 3 to

5) is caused by the reduction in effective frame sampling rate in going

from an 8 kbps to a 2.4 kbps system. Finally, the 2.9 point loss (items 5

to 6) could be due to a combination of bandwidth reduction and structural

differences. Notice that the biggest loss between successive items is only

2.9 points, yet the difference between the reprocessed speech (item 1) and

Belgard (item 6) is a substantial 11.9 points.

The most significant fact gleaned from the above is that despite the

significant losses, all systems mentioned perform well enough; DRT "folk

wisdom" 141 stipulates that DRT scores of 87 or higher can be classified as

"good," "very good," or "excellent."

Unfortunately, this state of affairs no longer holds in an

acoustically noisy environment, such as an F-I5 cockpit. Under these

conditions, only items 8 and 11 can be classified (barely) as even

moderate, while items 10 and 12 fall In the "poor" class and item 18 is

* very poor." These bad results contrast with those of the unprocessed

items 7a and 7b, which yield "good" or "very good", despite the F-IS noise.

19



One might argue that such results are to be expected; after all,

acoustic noise strips DRT points away from unprocessed speech and the

presence of the vocoder adds sufficient DRT loss to drag the score below an

acceptable value. The point, however, is that the vocoders generally

aggravate the situation, causing a greater loss in DRT points than one gets

by adding the loss due to noise plus the loss due to vocoding. The

situation is depicted in Fig. 4. The baseline loss of 5.8 points is simply

the difference between items 1 and 7a. The bottom heavy curve shows the

results obtained by simply summing the vocoder losses (in the quiet) to the

baseline loss of 5.8 points. The top heavy curve shows the actual results

obtained from Table III. Note that all systems deteriorate to the next

lower class (see Appendix C for a definition of the classes).

The conclusion we must draw is that vocoder processing compounds the

pernicious effects due to a strong acoustic noise background; also, those

systems that cause more loss in the quiet cause more such compounding.

Perhaps this implies that if we manage to improve DRT scores of such basic

devices as 2400 bps vocoders, the compounding effect will diminish. To

make headway in this area suggests a closer look at the DRT-generated

confusion matrices.

DRT Profile of Channel Vocoder Systems

Items 7a through 17 of Table III constitute, more or less, a profile

of how DRT scores increase as one goes from 2400 bps systems to the

unprocesied speech in relatively small steps. Visualization is improved by

plotting scores vs. systems in Fig. 5. As we move to the right, more

bits are generally added to the system. Where applicable, the bit rate is

20
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shown below each system in Fig. 5. All DRT scores wtre obtained with the

simulated F-15 noise condition.

The single biggest improvement is in going from a strict Belgard

structure to the more complex m2400. Both are 2400 bps systems, but m2400

employs spectrum flattening, frame fill and a higher overall bandwidth; all

these items, we conjecture, contributed to the DRT jump. When the data

rate is increased to 4 kbps, a slight increase is won, but the same 4 kbps

system was enhanced even more by the addition of frame fill. A tentative

recommendation is that frame fill is a useful addition to any

frame-oriented vocoder system.

Another big DRT improvement is won when we move to a straightforward 8

kbps system, but, disappointingly, the addition of a substantial amount of

relatively unprocessed speech contributes little to further improvement.

In fact, the results obtained from items 14 and 16 seem somewhat anomalous,

since Item 16 uses less raw speech but achieves a slightly higher score.

Also, item 11, which processes the raw speech through the complete

spectrally flattened synthesizer does slightly better than item 15, which

uses the same bandwidth of raw speech directly.

When we dispense with the vocoder completely, scores consistently

improve as bandwidth is increased, as seen in the three right-most items in

Fig. 5.

One of our aims is to improve our 2400 bps system to the point where

the 1)RT score is reasonably close to the roughly 9% score achieved by the

raw speech in F-15 noise. A reasonable approach would be to divide the

problem as follows: a) methods (with a quiet background) for getting
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the 2400 bps system to be as good as the 8 kbps system, and b) methods

(with an acoustic noise background) for improving the 8 kbps system to

where it can achieve close to 90% DRT.

IV. PERCEPTUAL ANALYSIS OF VOCODERS BASED ON PITCH EXPERIMENTS

Introduction

Traditionally, the ear's anatomy has been subdivided into outer ear,

middle ear and inner ear. Sound enters the ear and travels down the outer

ear until it impinges on the eardrum. This phase can be modelled as an

acoustic travelling wave in a fixed cavity. The vibration of the eardrum

sets a system of very small bones (the hammer, anvil and stapes) into

motion and it is the stapes that is mechanically connected to the inner

ear. The inner ear is a quite complicated structure and at this point, it

is useful to refer to the very schematized, almost cartoon-like Fig. 6.

The stapes mechanically transfers energy to the tympanic fluid in the

cochlea and the vibration of this fluid stimulates into vibration a large

number of hair cells. These hair cells consist of two types, called the

inner and outer. The "hairs", or cilia, on the inner hair cells vibrate

mechanically due to the fluid motion. Their mechanical activity modulates

the ionic flow across the hair cell membranes. The hair cells synapse on

the primary auditory neurons and their electrical activity affects the

firing pattern of these neurons. A rough sketch of this progression of

influences is shown in Fig. 7. The outer hair cells are connected to the

tectorial membrane as seen in Fig. 8 but at present it is not known what

role, if any, they play in auditory processing. It is estimated that 95%

of the primary auditory neurons are synapsed by the inner hair cells, even
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though there are three times as many outer hair cells. A more elaborate

discussion of auditory anatomy and physiology is reserved for Section V.

Helmholtz conceived of the auditory system as a bank of many

overlapping band pass filters. Near the entrance to the cochlea, the

membrane and associated hair cells respond to high frequencies and as you

move to the right on Fig. 6, the response becomes more sluggish,

corresponding to filters with lower center frequencies. Thus, for example,

a pure tone would cause only a specific place on the basilar membrane to

vibrate and this would lead, via the auditory system, to perception of the

tone. Tones of different frequencies stimulate different places on the

membranes. From an engineering point of view, this model corresponds to a

filter bank covering the audio range. By determining which filters contain

energy, the pitch of the tone is determined.

But now a complication is introduced when dealing with the perception

of complex periodic signals consisting of many harmonics. Even when the

fundamental frequency is missing, the perceived pitch is usually that of

the fundamental frequency. Fletcher (71 has referred to this result as

"the missing fundamental" while Schouten [8) has named it the "residue".

Results of this sort lead to theories of human pitch perception as being

influenced by the actual period of the signal rather than by a place

mechanism. For the perception of the missing fundamental to be explained

by a place theory would require that some non-linear phenomenon in the ear

would cause the place in the basilar membrane that corresponds to the

fundamental frequency to vibrate despite the physical absence of the

fundamental. Licklider 19) proved that this did not happen via the
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following clever experiment: he alternately played a pure tone (at the

fundamental) and a harmonic series of the same fundamental frequency but

with the actual fundamental physically absent. The listener then perceived

two sounds of equal pitch but different timbre. Then noise was added to

the above sequence; the pure tone was completely masked while the harmonic

series came through loud and clear. If perception of the harmonic series

were dependent on combination tones appearing at the fundamental frequency

place in the basilar membrane, it too would have been masked out.

Licklider's experiment cast a vote in favor of Schouten's (and

Seebeck's 110]) theory of periodicity over place.

Further insight was obtained from the relatively recent experiments of

Houtsma and Goldstein (11]. In the first experiment, musically trained

subjects were asked to recognize "intervals" between two successive

signals. Each signal contained two successive harmonics of a given

fundamental frequency. The "interval" is defined as the difference between

successive fundamental frequencies. When the above two signals were

presented to both ears, the trained subjects had no trouble identifying the

intervals.

The second experiment was a repeat of the first experiment but with

one notable exception; for each signal, one harmonic only was presented to

one ear while the other harmonic was presented to the other ear. Again,

pitch intervals were correctly identified. This indicated that the

perception of pitch was centrally located, that is, it took place after the

auditory signals from the two ears had been combined. What actually

happens physiologically is still a mystery, but these experiments must now
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be incorporated into any proposed model. Also very significant is the fact

that place theory (somewhat altered) sneaks back in. We can imagine that

the appropriate places on the basilar membrane vibrate for all existing

harmonics of the signal and then that the "central processor" combines this

knowledge to produce a pitch value.

A straightforward interpretation of the above is that the ear and

brain perform a high resolution spectrum analysis followed by a pattern

recognition procedure to detect pitch based on this spectral structure.

Goldstein [121 has proposed a model of this sort, and Duifhuis et al. [13],

have implemented such a model to extract pitch from a speech wave.

Psychophysics Experiments That Must Be Explained by a

Pitch Perception Model

If we are to stand by our original hypothesis that the auditory system

is an effective pitch detector, then any proposed model should yield

results that agree with known psychoacoustic data. Following is a brief

summary of some of this data:

a) Any model must be able to extract the pitch from a periodic signal

with missing fundamental.

b) De Boer 114) describes some experiments on inharmonic signals. He

first generated the frequencies 1400, 1600, 1800, 2000, 2200, 2400, 2600 Hz

and established the pitch to be 200 Hz. Then he shifted each harmonic by a

fixed amount (say 30 Hz) to obtain 1430, 1630, 1830, 2030, 2230, 2430, 2630

Hz. Although this sequence results in an inharmonic signal, the perceived

pitch is about 205 Hz, illustrating that approximately periodic signals

evoke the perception of the approximate pitch. This should not be too
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surprising when we consider that the pitch of a speech wave is fairly well

tracked despite its variation.

c) Miller and Taylor [15] have evoked pitch perception by switching

white noise on and off periodically. Since the spectrum of this signal

remains white, it is difficult if not impossible to invoke a place model to

explain this experiment.

d) When two harmonically related sine waves are played in sequence,

the pitch is perceived to be that of each tone [16]. When noise is added,

the fundamental frequency is perceived. This experiment argues for some

sort of noise-dependent smoothing by the auditory system.

The Principle of Dominance

Although human pitch perception can be based on either a low passed or

high passed version of an audio spectrum, Ritsma [171 has proved that the

low frequency portion of the spectrum is dominant. He showed this with a

simple but ingenious experiment wherein he added the outputs of a low pass

and a high pass filter. Both filters were excited by periodic pulse trains

of different fundamental frequencies; Ritsma's subjects responded most

strongly to the low passed version. Our informal experience with vocoiers

verifies this principle of dominance for speech. In a hybrid vocoder

consisting of vocoded speech added to waveform-coded (baseband) speech, the

baseband should be at the low end of the spectrum to minimize the

perception of pitch errors. It is also true that the most effective

portion of the spectrum for performing automatic pitch extraction is in the

baseband region (200-1000 Hz).
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The analysis of Section III indicates quite strongly that DRT scores

are more severely affected by noise in the spectrum channel rather than

noise in the pitch channel. On the other hand, we know that the breakdown

of the pitch track can cause the vocoded speech to be unacceptable.

Furthermore, although much notable pitch perception research has been done

using non-speech stimuli, little such work has been done with human (not

synthetic) speech. For these reasons, we decided to examine in some detail

how speech degradations and vocoder structures influence the pitch percepts

of vocoded speech. At present, we are implementing the facilities needed

to perform this work and performing informal pilot experiments to obtain a

"feel" for the kind of data to accumulate. Thus, this section is a

preliminary statement of progress toward the goal of more formal pitch

perception experiments using speech stimuli.

Ritsma's "dominance" principle suggests that pitch is most strongly

perceived in the spectral region 200-2000Hz. From this, we expect that

pitch and buzz-hiss errors are most noticeable in that region. To test

this, we ran an informal experiment where we combined low pass filtered

speech with noise-excited vocoded speech. The subjects had control of the

cut-off frequency of the low pass filter with the vocoded speech spectrum

always remaining contiguous. Although differences between this hybrid

signal and the full band speech signal could be detected at cut-off

frequencies above 2 KHz, the consensus was that a cut-off frequency of

about 1500 Hz was sufficient to create acceptable hybrid speech; the main

effect appeared to be a more pronounced "breathiness" of the speakers.
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In a vocoder, pitch is sampled and quantized and perhaps smoothed.

This raises the question of the correct degree of these processes and this

in turn hinges on the ability of the listener to discriminate. To examine

these issues, a pitch discrimination experiment is presently being

arranged. Well-known results exist for pitch discrimination of pure tones

and pulse trains, and we intend to extend such results to encompass the

spectrum of pitch-discriminable signals from pure tones to vocoded speech,

including constant frequency pulse trains, pitch tracks, steady-state

vowels and monotone speech. A rough experiment was run on the

discriminability of vocoded speech from our 8 kbps channel vocoder. Tape

S11 was played through the system. The first of each sentence pair was

played through the vocoder with normal pitch; for the second sentence, the

overall pitch contour was lowered or raised by a given (random)

percentage. It was found that the threshold of discrimination for lowered

pitch was about 3% and for raised pitch about 2%. Tests using the various

stimuli mentioned above will be conducted more formally.

Further insight into dominant regions can be obtained via masking

experiments. If the low frequencies are dominant for human pitch

I perception, it should follow that additive low frequency noise should cause

greater deterioration of perception than the same amount of high frequency

noise. Some informal listening indicates this to be true, but formal

testing is required before any reasonable quantitative statements can be

made.

Returning to the question of whether spectrum or pitch track noise

creates more listener difficulties, recall the results of items 20, 21

1 Si" refers to the standard tape generated by the Narrow Band Speech

Consortium (1975).
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and 22. Item 21 says that 3 DRT points are gained by removing the noise

from the pitch track while item 22 tells us that 18.8 points are gained by

removing the noise from the spectrum track. Thus, one might conjecture

that in an operational vocoder system, as noise is increased, spectrum

information gets clobbered much before pitch information. However, results

for Items 20, 21 and 22 were obtained using computer-generated noise with

an approximately white spectrum. In a sense, this biases the results

toward favoring pitch, since: a) we have seen that pitch perception is

dominant in the low frequency region (i.e., 200-1000 Hz), and b) the Gold

pitch detector, used in all experiments, examines only this low frequency

region. Thus, if white noise is present at the vocoder input, the actual

signal-to-noise ratio at the input to the pitch algorithm (after low pass

filtering) is approximately 12 dB higher than the corresponding SIN at the

spectrum input.

The "fair" approach to this problem is as follows. We first collect

pure noise tapes from different aircraft (for example, F-15, helicopter,

E3A and add this noise to any part of the vocoder. Thus, for example,

this noise can be added to either the pitch or spectral track separately or*1 even to a portion of the spectral track. Furthermore, the noise levels at

different inputs can be independently adjusted. We are in the process of

building the hardware and software needed to run such experiments.

Hall and Peters t16] have found that when harmonics of a fundamental

frequency are presented time-sequentially, subjects can identify the

individual harmonics, but when noise is present, the tones "merge" and a

percept of the fundamental frequency is obtained. This implies that

34



subjects perform smoothing over longer time intervals in the presence of

noise. Such a result may have a pay-off in vocoders that are designed to

work in noisy environments. One can imagine imposing gtreater smoothing on

both pitch and spectrum tracks during noise. At present, these notions are

still in the "idea" stage, but we hope to exploit them In the near future.

V. THE PERIPHERAL AUDITORY SYSTEM

Introduction

If we understood completely the behavior of the auditory system in the

human - from the periphery system consisting of the ear right up to the

auditory portion of the cerebral cortex - it would be relatively easy to

design speech transmission systems. We would only need to simulate this

system on a digital computer, present an acoustic signal to the input and

observe which features the system extracts from the acoustic input. Having

made this measurement, we would then present to this simulation the output

from any communications system under design and make sure that the same

undistorted features were present at the output of the simulation as when

the unprocessed speech was presented. Additional knowledge about the range

of distortions allowed on speech features of importance to the perception

process would allow us some engineering bounds on systems under design and

consideration. This would indeed be a very orderly process wherein the

creative part of the design would consist of inventing new techniques for

communicating, rather than being concerned about the design's acceptance to

the human ear. The acceptance would be easily quantified using the

simulation and knowledge of the important features in the perception

process.
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At the present time, we do not have a very good understanding of the

auditory system in the human. From a physiological approach, it is

difticult to study the human auditory system in living systems. On the

other hand, much was learned by von Bekesy and others using ear

preparations from cadavers. This detailed anatomical knowledge has been

invaluable. To study the hearing process in live animals, it has been

necessary to move down the evolutionary chain and find animals that have

similar, or what is believed to be similar, auditory systems at least at

the level under study. This approach leads to the study of cats, squirrel

monkeys, lizards, turtles, and other creatures of opportunity for the

physiologist. What we know of the human auditory system has been inferred

and hypothesized from a body of ingenious psychoacoustic experiments which

have gathered data on how humans perceive and detect certain acoustic

stimuli. This combination of physiological studies on animals (and humans

under very special conditions of trauma or disease) along with

psychoacoustic studies on humans has led to a large body of knowledge on

the audition process, but much more research is required before we can

fully explain how speech is converted from a series of acoustic phenomena

to perceived meaning. In this section, we will outline the physiology of

the peripheral auditory system in the human and point out in parallel what

the Implications are for speech communications and compression equipment

designs.

The Peripheral System

The peripheral auditory system includes the outer, midele, and inner

ear, as well as the cochlear nerve bundle which connects the cochlea or
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inner ear to the brain. Figure 9 shows a cross sectional view of the

system and the block diagram indicates the nature of each portion. The

outer or external ear provides a mechanical connection to the acoustic

signal in free space. This acoustic signal is then coupled to the middle

ear apparatus through the eardrum, which is connected to a series of three

small bones - hammer, anvil, and stirrup - and then in turn to the inner

ear. This chain of action which transmits the incident acoustic signal to

the inner ear is linear for the most part. The movement of the stirrup or

stapes is coupled to the cochlea or inner ear by means of a membrane called

the oval window that vibrates with the stapes and generates fluid waves in

the fluid filled cavities of the cochlea. Inside the cochlea, two

structures cause a conversion of the acoustic fluid wave into a coded

signal which moves along the cochlear nerve to the brain. Before we look

in more detail at the inner ear transducer mechanisms, we should note the

feedback paths from the nervous system back to outer, middle, and inner

ear. All of these paths serve to orient and gain adjust the incoming

signal. In the case of the pinna or outer ear, the feedback serves to

orient the organ for maximum reception of the signal. This does not happen

in man, but does take place in most animals. Feedback to the middle ear

serves to adjust the middle ear transfer function gain so as to keep the

inner ear from being overdriven by loud inputs. Finally feedback to the

inner ear organs is less well understood, but appears to serve as an

automatic gain control mechanism at the nerve cell level of operation.

Cochlea and Basilar Membrane

The inner ear is a spiral shaped organ that can be imagined as

stretched out into a single long fluid-filled set of cavities whose cross
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section is as shown in Fig. 10. The top and bottom cavities, the scala

vestibuli and scala tympani, respectively are connected at the far or

apical end (the end away from the stapes) by a hole in the membrane

separating them called the helicotrema. The stapes driving the oval window

membrane cause fluid waves to be set up in the continous cavity formed by

the scala vestibuli and scale tympani. Separating these two cavities

except at the helicotrema is a membrane which vibrates with the fluid waves

and effects the frequency analysis of the acoustic signal necessary for the

hearing process. This membrane is actually a complicated set of structures

of which the most important is the basilar membrane as shown in Fig. 11.

This figure presents the two cavities we have discussed, but now we see

them in cross section as well as seing that the dividing partition is

actually a complicated structure in its own right which includes another

smaller cavity, the scala media. The lower dividing surface between the

scala tympani and media includes the basilar membrane which vibrates up and

down in this cross sectional dimension when fluid waves occur in the

cochlea, and also includes the transducer organ from mechanical to nerve

response, the hair cells. The basilar membrane structure is tuned in such

a way that the end closest to the stapes and oval window, the basal end,

responds best to high frequencies, and the farthest end responds best to

low frequencies. The response to a single acoustic pulse at the ear drum

is shown with place along the membrane as a parameter in a simulation by

Flanagan (Fig. 12). Notice that there is a delay for the lower frequency

responses since they occur farther down on the length of the membrane.

Also although it is not obvious from the figure, the membrane is tuned as a
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function of position in almost a logarithmic manner so that logarithmic

distance along the membrane corresponds to linear frequency change. Notice

also from the figure that the higher frequency responses have more

resolution indicating an increase in bandwidth with frequency. The

individual place responses are shown in normalized form in Fig. 13 which

displays both magnitude and phase response versus frequency for a

normalized filter. Notice the sharper cutoff response on the high basilar

membrane portion of the cochlea; this leads us to several conjectures about

auditory processing and its implications for speech communications

equipment. The nature of the basilar membrane "filters" indicates that

speech communications devices must have good resolution in the time domain

for high frequencies. This follows from the properties of the membrane we

have just described. We should note that no vocoders of either the LPC or

channel variety use this property in any meaningful way. The LPC vocoder

approach uses a uniform bandwidth analysis across frequency which is a

function of the time window used. The channel vocoder at best uses a

filter bank for channel analysis which may increase bandwidth as center

frequency increases. The detected envelopes of these filter outputs are

all smoothed with the same bandwidth low pass filter (usually around 25-30

Hz), thus reducing any time resolution associated with the higher bandwidth

higher frequency filters. There are techniques which can incorporate these

suggestions into both the LPC and channel vocoder framework, but they have

not yet been explored. Consequently we do not know if this extrapolation

from our knowledge of basilar membrane behavior will add to speech

communications quality and intelligibility.
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Hair Cell Properties

An enlarged view of the central section of the cochlea displays the

organization of cells around the basilar membrane. In particular, in

Fig. 14 we can see the structures called external and internal hair cells

which span the space between basilar and tectorial membranes. It is these

hair cells that transduce the mechanical motion of the basilar membrane

into electrical activity of nerve cell fibers connected to them. The hair

cells in the human inner ear, as in higher animals such as the cat, are

organized into three rows of external hair cells, and one row of internal

hair cells as one moves along the long dimension of the cochlea. As the

basilar membrane moves up and down under the influence of fluid waves, the

hair, and in some cases the cell bodies, are subject to distorting forces.

The resultant physical changes generate time varying voltages in the hair

cell bodies. These time varying voltages interact with the nerve fibers

connected to the hair cells so as to cause the nerve cells to fire in

patterns correlated to the time varying voltages. Figure 15 is a

representation of the movement and distortions associated with the internal

(inner) and external (outer) hair cell columns when there is movement of

the basilar membrane. Note that the three rows of external cells are

fastened between the basilar membrane and the tectorial membrane as shown

in Fig. 15, but the inner hair cells are not fastened to the tectorial

membrane. It is conjectured that outer cells are sensitive to the basilar

membrane position, while the inner cells are sensitive to fluid motion in

the scala media.

In the human ear, there are about 4000 inner hair cells arranged along

the length of the basilar membrane along with 12,000 outer hair cells which
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Fig. 15. Relationship between the tectorial membrane and cilia of outer
hair cells. At rest (lower Illustration) the cilia stand perpendicular to
the cuticular surface of the cell. When pressure waves move the basilar
membrane, a "shearing" force acts to alter the angle of the cilia with
respect to the cuticular surface. Note that the cilia of the inner hair
cells are shown to bend, not from tectorial membrane attachment but from
fluid motion. From P. Dallos and A. Ryan,: Physiology of the inner ear.
In J. L. Nqrthern Ced).: Hearing Disorders, 1976, p. 95, (Little Brown
and Co.).
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compose the three outer rows. Intertwined with and innervating these

16,000 hair cells are approximately 30,000 nerve fibers which caome together

to form the eighth or cochlear nerve. The inner hair cells are more

primitive cells in an evolutionary sense, but are innervated by about 95%

of the 30,000 fibers. The three rows of outer cells are involved with the

remaining 5% of the fibers. Aitho-gh studies on hair cells in the turtle

and lizard indicate hair cells to possess an internal tuning mechanism in

addition to any tuning in the basilar membrane, there is no concrete

evidence for this in the cat or the human. As a consequence, it is

generally assumed that the basilar membrane tuning characteristics

determine the major tuning in the auditory system.

Since the basilar membrane is a continuous mechanical structure, we

can think of the frequency analysis as performed by a bank of highly

overlapped (in frequency) filters. In addition, since there are some

30,000 nerve fibers connecting these "filters" to the brain by connecting

to hair cells in many redundant and overlapped ways, information flowing to

the brain must represent a highly overlapped filter bank analysis with many

redundancies In the representation of each filter. Perhaps some of the-t redundancy provides f or dynamic range and amplitude coding in some

fashion. It is interesting to speculate that this redundant and overlapped

spectrum representation must in some way enhance the processing of noisy

speech signals. In addition, if we consider a particular. frequency range,

the many redundant and overlapped channels coded by the nerve fibers

represent a statistical sample over space that may be equivalent to a

sample averaged over some time period. This fits with ideas that suggest
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the speech signal is coded in some statistical rather than deterministic

way when going from the cochlea to the brain. For designers of speech

communications equipment, and in particular vocoders, thece may be some

importance in using many overlapped frequency channels to reduce the

effects of additive noise upon vocoded speech analysis.

From Eighth Nerve to Cerebral Auditory Cortex

As we have outlined, an acoustic signal incident upon the outer ear

results in a chain of action through basilar membrane vibration and hair

cell transduction to produce some manner of correlated nerve fiber pulses

or "spikes" of depolarization voltages that travel along the nerve fibers

in the cochlear nerve to the brain. The cochlear nerve bundle contains

fibers which represent action from all of the frequency spectrum processed

by the vibrating basilar membrane. The voltage pulses measured on any one

fiber by a microprobe carefully placed into the cochlear nerve are

associated with a small set of hair cells and consequently a small area or

place on the vibrating membrane. Because the nerve firings are not

deterministic when the hair cells excite neurons but instead produce events

or firings in a statistical sense, statistical measures must be used to see

any interesting data. For example, a common mode of processing data from

single fibers is the interval histogram. During excitation with some

acoustic probe signal, a histogram of successive intervals between pulses

is built up. This measure shows the characteristic period or frequency of

the particular fiber and associated hair cells. Figure 16 shows four

histograms gathered from four different fibers when the eardrum is excited

by a narrow click signal (an impulse-like signal). Notice that the
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Interval between peaks is related to the characteristic frequency of the

particular fiber probed. If the pulse train was examined on a scope

display, very little regularity would be seen, but the histogram over

enough trials shows the information that must exist if the fiber is

transmitting useful data to the brain. Workers such as Delgutte, Sachs and

Young, [29,301 have demonstrated that classical parameters of speech such

as voicing period and formant. frequencies are in evidence from measurements

made on these fibers when the ear is excited by artificial vowels that can

be repeated and statistical data obtained. This result is, in some sense,

to be expected, because we know that speech parameters must be transmitted

along the cochlear nerve to the brain, but it has been very difficult to

show this information represented on the nerve fibers with real data and

real animals.

The auditory pathways from the cochlear nerve to the auditory portions

of the cerebral cortex have been explored at least anatomically in many

animals, so much information is known about the gross anatomical

organization of pathways from inner ear to cortex. Details of physiology

and organization at individual assemblages of nerves; nuclei; as they are

4 referred to inside the brain, are very much lacking. A pictorial sketch of

some of the higher pathways is presented in Fig. 17. The figure traces the

pathway from the organ of corti which contains the basilar membrane and the

hair cells to the first group of neurons in the brain receiving these

fibers and called the cochlear nucleus. From this nucleus there are

pathways of fibers that both cross over to a nucleus associated with the

other ear and also ascend to the next nucleus (the superior olive) from the
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same ear. These pathways and crossovers occur at the level of the brain

associated with the medulla. At the mid-brain level, nerve fibers travel

from the superior olive and cochlear nucleus to a nucleus in the mid-brain

called the inferior colliculus located at the top portion of the

mid-brain. Again there are crossing fibers between the two ears so that

binaural processing can occur. Finally, the next higher level of the

auditory pathway moves to the medial geniculate body and then on to the

auditory portions of the cerebral cortex. Once past the inferior

colliculus there are no crossing fibers, so any processing associated with

binaural inputs probably takes place below the level of the thalamus which

is the brain area containing the medial geniculate body. That more and

more complicated processing or association operations takes place as the

signals move up toward the cerebral cortex is born out by Table V shown of

numbers of neurons involved for each level of processing for the monkey.

From the 30,000 nerve fibers, and therefore nerves as well involved with

the cochlear nerve bundle of each ear, the signals end at the cerebral

cortex where approximately ten million nerves are involved in final

processing. At the level of the cortex, in spite of the amount of

processing and crossing over that has taken place, there is a one-to-one

relationship, tonotopic arrangement, between place in the cortex and

frequency of acoustic input. This is true at least in the sense that if a

place in the auditory cerebral cortex is excited by a microprobe into the

exposed brain, the subject will hear a tone of corresponding frequency.

For completeness of this rather sketchy discussion, it is worth noting

that pathways exist in the downward direction from cortex back to the hair
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TABLE V

CELLS IN THE AUDITORY NUCLEI OF THE MONKEY*

Central Auditory Nucleus Number of Cells

cochlear nuclei 88,000
superior-olivary complex 34,000
nuclei of lateral lemniscus 38,000
Inferior colliculus 392,000
medial geniculate body (pars principalis) 364,000
auditory cortex 10,000,000

*Foundation of Modern Auditory Theory II - Tobias
Academic Press 1972. Chapter VI, p. 252.
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cells. These pathways appear to be involved with A.C function as described

earlier, but may have more sophisticated albeit unknown properties. At any

rate, there are roughly 600 fibers in the cochlear nerve that terminate on

the hair cells and provide this backward path to each ear from the level of

the cortex.

Concluding Remarks

In this section, we have tried to outline the signal processing

implemented by the organic structures known as the peripheral auditory

system and the brain organized to deal with acoustic stimuli. We have

pointed out that the basilar membrane implements a highly overlapped filter

bank frequency analysis and the nerve fiber connections to the hair cell

transducers provide information about this filter bank analysis in a very

redundant manner to the brain. We also pointed out that the peripheral

system provides high resolution in frequency at lower frequencies, and high

resolution in time at the higher frequencies associated with acoustic

inputs to the ear.

At the present time, our knowledge of the auditory system in terms of

overall simulations useful in design of communications systems is sparse.

0 Hnwever, even our limited knowledge suggests some properties vocoders and

other speech equipment should retain or try to copy to provide robust and

truly acceptable behavior from voice output to perception. These can be

summarized as follows:

(a) A large number of highly overlapped bandpass filters.

4 (b) Many detectors at each frequency.

(c) Final decisions based on probabilities.

(d) Adaptivity to changing conditions.
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VI. MODELLING THE AUDITORY SYSTEM

The ultimate goal of the perception-based vocoder program is to

provide vocoder systems of improved intelligibility, quality and

robustness. In this report, the robustness Issue has centered about the

performance of vocoders in noisy acoustic environments such as airplanes.

Of particular interest to us has been the understanding of the behavior of

the human auditory system. This interest is based on our major assumption

that an analyzer designed to emulate the auditory system should result in a

system with the desirable properties of high intelligibility, quality and

robustness. Thus, one of our aims is to build software and/or hardware

that emulates the auditory system.

The chain of sound leading to a percept begins at the entrance to the

outer ear, travels though the middle ear, through the cochlea with its

basilar membrane and hair cells, out to the primary auditory nerves, and

through various way stations (cochlear nucleus, superior olive, lateral

geniculate) on its way to the auditory cortex. Meaningful and sufficiently

abundant physiological data are available only as far as the spike trains

from the primary auditory nerve. Successful measurements from this nerve

have been documented for various stimuli such as tone bursts, clicks and

various synthetic speech-like sounds. Based on such measurements, various

models for this part of the auditory system have been proposed.

A different approach to modelling is based on measured behavior. For

example, numerous psychophysics tests on human pitch perception lead to

models of the entire human auditory system but with the restriction that
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this model need only emulate behavior as regards pitch perception. Other

models are based on measured perception of various (usually synthetic)

speech sounds.

Our first job will be to review some of these models. It is important

to point out that all existing models are computational models, that is,

computer algorithms that are (hopefully) computationally equivalent to

measured behavior. In particular, although we know that the chain of

anatomical connections beyond the cochlea consists exclusively of neural

connections, it is the presumed end result of neural behavior rather than

the neural behavior itself that is modelled. In this section, we propose

the longer range approach, that models of auditory behavior (such as pitch

perception) be modelled using neuron-like elements and that simulation

programs of neural networks be incorporated directly into our models. Our

hope is that as physiological measurements are made deeper into the

auditory system, modelling along these suggested lines can remain more

self-consistent and adaptable to new results.

Von Bekesy 1181 measured the response of the basilar membrane to

various stimuli and thus set the stage for the filter bank approach to

auditory models. Helmholtz [19] had already proposed that the ear had

properties akin to that of a Fourier analyzer and Von Bekesy showed that

different places on the basilar membrane vibrated at different resonant

modes. Based on such data, Flanagan [201 was able to extensively simulate

the properties of the auditory response through the basilar membrane

motion.
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Kiang [21] and others have measured the output of the auditory nerve

to various sounds. We know that the spike train produced by a single

auditory nerve is to a great extent controlled by hair cell functioning,

but it proves to be very difficult to perform good mcasurements on the hair

cells of cats; Weiss [21a] and others have worked with the alligator

lizard. Various models of hair cell-neuron transduction have been proposed

[25].

Observations of spike trains from the primary auditory nerve (in

particular, for the anesthetized cat) strongly suggest a statistical

formulation to describe patterns of nerve firings. Siebert's [231 work has

been most influential in this regard. In the absence of an auditory

stimulus, nerve firings are random. When sound is impressed on the ear,

the firings are influenced by the signal; a statistical description is

still called for. Siebert invokes a non-stationary Poisson process with

intensity function r(t) and states that this statistical model fits much

observed data except in one respect; "actual nerve records show, relative

to a Poisson process, a deficiency of short interevent intervals. This

phenomenon is usually attributed to a 'refractory' effect in the nerve

fibers and/or receptors that prevents one firing from immediately following

another."

Weiss' model of auditory nerve firings [22] (shown in Fig. 18)

includes the refractory effect. In this model, whenever the membrane

potential exceeds the threshold potential, the neuron will fire and will

instantly raise the threshold potential to the high value RM . This

threshold will now decay exponentially with time constant TR, so that
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short intervals between adjacent firings have low probability of

occurrence.

Other models of stimulus-induced activity of auditory nerve fibers

have been proposed by Rose and Johnson 124,261. A recently proposed model

by Lyon 127] contains an interesting variation on the filter bank that is

common to all such models. Lyon's model is shown in Fig. 19. The outputs

are indicated by the small letters a, b, c, etc. A signal, in addition to

being filtered, arrives at different outputs with different delays; in this

way, the basilar membane propagation velocity is taken into account. Lyon,

by Incorporating automatic gain control inputs from neighboring channels,

also attempts to include lateral inhibition in his model. Lateral

inhibition is an effective sharpening of sensory channel responses by

* weighting outputs with adjacent or lateral channels.

The remainder of this section will be devoted to a discussion of some

preliminary work toward our own model of the auditory system.2 Our goal

is somewhat grandiose; we would like to develop a model that not only

agrees with measured physiological data, but allso can help explain many of

* the phenomena centered about pitch perception and spectral perception.

* Although this model is in a sense computational (since all simulation will

be done by computer), we also intend the components of the model to consist

of neuron-like elements once the stimulus gets to the auditory nerve.

The present simulation is being developed on the LDSP (Lincoln Digital

Signal Processor) facility. Our first effort is directed toward pitch

perception; for this reason, we have limited the bandwidth to Ritsma's

"regional dominance" which lies approximately In the region 200-1500 Hz.

Our 40 filters are each of bandwidth 140 Hz, and the center frequencies are

* 2The Ideas presented here are in large part due to T. Hially.
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30 Hz apart. (In the future, we expect to bring our filter design more in

line with measured data, perhaps following Lyon's filter model. Our

present feeling Is that the relatively large overlap among adjacent filters

is the key ingredient.)

Many model makers have tried to incorporate hair cell activity

directly into the model. We have taken a somewhat unorthodox approach and

go directly from the bandpass filter outputs to the spike trains. In so

doing, we have tried to incorporate many of the known features of auditory

channels such as refractory period, adaptation, synchrony, and randomness.

It is important to note that the spike trains obtained by stimulating a

"neuron" with a filter output constitute only the first layer of nerve

fiber signals. Our intention is to eventually proceed to a second and

perhaps even a third layer so that the higher order processes of pitch and

spectral perception can be modelled. This approach is more akin to some of

the classical efforts to simulate neural networks that were carried out in

Lhe late 1950s by Clark and Farley 128].

Our model bears a resemblance to any of the six pitch detectors in the

Gold algorithm 161. A spike occurs when the rundown signal intersects the

filter signal, as shown in Fig. 20. Following this, the rundown signal

tracks the filter signal until the latter reaches a positive peak, at which

time a refractory interval of constant duration is -nitiated. During this

interval, no new spikes can be generated. Also during this interval, the

random signal continues to track the filter signal so that it will move to

a higher peak, should one occur. Once the refractory interval ends, the

rundown signal returns to its normal mode of exponential decay, until it
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again intersects the filter signal. When this occurs, a spike will be

generated with a probability proportional to the ratio of the intensity (at

intersection) to the intensity at the previous intersection. Introduction

of this probabilistic component usually causes intervals between spikes to

be multiples of the basic pitch period; this characteristic is reminiscent

of interval histograms, as described in Section V.

The display of Fig. 21 shows some early results from this program.

The top line shows 150 milliseconds of a speech waveform. The other

signals show the outputs of highly overlapped band pass filters. Below

each filter output is the spike train obtained by processing the signal

with the neuron-like element described by Fig. 20. A cursory look at this

data suggests that the spike trains from many neurons might be combined

together to yield a cleaner and more reliable pitch sequence than is

obtained from a single element. This step could presumably be done through

the use of additional layers of neuron-like elements.

The program is being implemented on the LDSP. Because of the many

processing elements involved, real time operation is not possible.

However, we anticipate that by carefully analyzing the behavior of these

elements in response to actual speech signals, we will begin to develop

some insight into how their outputs might be combined in order to yield

robust and reliable estimates of pitch and spectrum. We will then begin to

consider additional layers of neuron-like elements to implement these

processes.
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PPENDIX C
DESCRIPTIONS CATEGORIZING DRT INTELLIGIBILITY

(from Reference 4)
DRT

Intelligibility Category Examples (based on three male speakers)
Score

100 In quiet environment; no
Excellent Unfiltered speech significant distortion or

reverberation; high-quality
4 kHz low-pass microphone
filtered speech

96 -----------------------------------------------------------------------------------
CVSD at 32 kbps: Ber<1%

Very good speech in quiet
environment

CVDS at 16 kbps: Ber<l%

91 ---------------------------------
APC at 9600 BPS Speech from

Good CONUS median analog voice channel quiet
LPC-10 narrowband vocoder at 2400 BPS Environment

87 -------------------- ---------------------------------------------------------
Speech in jet A/C

LPC-10 narrowband vocoder at 2400 BPS Cabin noise
Moderate BER <1% ( 87 db SPL)

83 ---------------------------------------------------------------------------

Fair LPC-10 at 2400 BPS: 2Z BER Speech in quiet environment
(no error correction)

79 --------------------------------------------------

Poor LPC-10 at 2400 BPS: 5% BER Speech in quiet environment
(with bit error correction)

75 ----------------------------------------------------------------------------------

Very poor Experimental 800 BPS voice processor: speech in quiet
(zero bit errors)

70 ....

Unacceptable LC-l0 at 2400 BPS: Speech from helicopter noise
environment
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vocoder analyzer that better resembles the peripheral auditory system would function in a superior
manner to present-day vocoders. Topics include reviews of speech enhancement techniques, perceptual
analysis of diagnostic rhyme test data, a brief description of the peripheral auditory system and an out-
line of proposed psychophysical tests. The final section is devoted to a discussion of some preliminary
work on computer simulation of an auditory model.
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